
PostgreSQL cheat sheet

Our practice databases

• Host: imperial-2021.ckp3dl3vzxoh.eu-west-
2.rds.amazonaws.com

• Username: imperial
• Password: imperial-fdt-online-2019-

colossal-shelf
• Port: 5432
• Database: dvdrental or northwind or movies

or world
In Postgres

• Single quotes only - no double quotes
• This is a Postgres cheat sheet. MySQL or

other versions of SQL may operate slightly
differently.

Standard query structure
• SELECT (including window functions)
• FROM
• JOINs, each with an ON
• WHERE
• ORDER BY
• LIMIT

Query tips

• Build up your query slowly, running it as
you go; start with a simple SELECT

• Capitalise all SQL keywords
• Use newlines clearly to break up the query

SELECT * FROM table_name
SELECT col_name FROM table_name
SELECT DISTINCT col_name FROM table_name

GROUP BY:
SELECT department, COUNT(employee_id)
FROM employees
GROUP BY department

Every GROUP BY needs an aggregate function: one of
COUNT, AVG, MAX, MIN, SUM

Joins
SELECT col1, col2
FROM some_table
INNER JOIN some_other_table
ON some_table.key = some_other_table.key

A sample query
SELECT col1, col2
FROM some_table
INNER JOIN some_other_table
ON some_table.key = some_other_table.key
WHERE col1>4
ORDER BY col1 DESC
LIMIT 100

Updating
UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

Creating a new table
CREATE TABLE table_name(
 column1 datatype,
 column2 datatype,
 column3 datatype,

 columnN datatype
);

Deleting a table
DROP TABLE table_name;

Inserting into a new table
insert into items_ver (item_id, name, item_group)
select item_id, name, item_group from items where
item_id=2;

Joins: shortcut syntax
SELECT *
 FROM weather w, cities c
 WHERE w.city = c.name;

SELECT *
 FROM weather, cities
 WHERE city = name;

SELECT *
FROM weather INNER JOIN cities
ON weather.city = cities.name;

Window functions
OVER indicates a window function

expression OVER (PARTITION BY attribute)

expression OVER (ORDER BY attribute)

SELECT depname, empno, salary, avg(salary)
OVER (PARTITION BY depname)
FROM empsalary;

Use LAG(column) to lag one column and LAG(column,
n) to lag n columns. For example,

LAG(price, 2) OVER (ORDER BY date) will create a
new column with price values lagged by 2.

LEAD is the opposite of LAG.

Subqueries
SELECT *
FROM film
WHERE rental_rate >
 (SELECT AVG(rental_rate) FROM film)

SELECT * FROM
(SELECT * FROM film) AS film_table

CTEs
WITH my_cte AS (CTE query),
my_second_cte AS (second CTE query),
main query

Views
CREATE VIEW my_view AS
view query

You can also use CREATE OR REPLACE VIEW
or DROP VIEW

Loading data from a CSV
COPY movie
FROM '/path/to/data.csv'
DELIMITER ','
WITH CSV HEADER

\copy table_name FROM full_path WITH CSV HEADER;

Standard data types
varchar(size) length-limited string
text string of any length
integer 4-byte signed -
2147483648 to +2147483647
bigint 8-byte signed
serial 4-byte autoincrementing
real 4-byte floating point
double precision 8-byte floating point
money currency
bool or boolean true/false

Date/time types
date
timestamp
timestamp with timezone
time
time with timezone

Logical operators
AND, OR, NOT

Comparison operators
>, <, >=, <=, =, != or <>

a BETWEEN x AND y
a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b
a IS NULL
a IS NOT NULL

expression = NULL will not work because nothing is
equal to null (an unknown value)

Boolean expressions
expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN
expression IS NULL

Set union: table_1 UNION table_2
Set intersection: table_1 INTERSECT table_2
Set difference: table_2 EXCEPT table_2

Check two queries for equality: (SELECT ...) = (SELECT ...)

Operators
+ - * /
% (modulo)

You can use various mathematical functions like
floor(), ceil(), round(). See the Postgres
documentation for more.

|| string concatenation

String matching
string LIKE pattern

_ matches a single character
% matches a string of zero or more characters

Examples:
'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

string SIMILAR TO postgres_regexp

(The postgres regexp is similar to standard
regexps, see the documentation)

Dates and times
time
time with timezone
date
timestamp (both date and time)
timestamp with timezone

date '2001-09-28' + time '03:00'
date '2001-09-28' + integer '7'
date '2001-09-28' + interval '1 hour'
timestamp '2001-09-28 01:00' + interval '23 hours'
timestamp '2001-09-29 03:00' - timestamp '2001-09-
27 12:00'
time '05:00' - interval '2 hours'

DATE(col) converts to date
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
NOW() returns timestamp with timezone
date_trunc('hour', date) zeros all more granular parts
date_part('hour', date) extracts this particular part
(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

Advanced aggregate functions

VARIANCE(col)
STDDEV(col)
EVERY(col) bool to bool

Subquery operators

EXISTS (subquery)
expression IN (subquery)
expression NOT IN (subquery)

expression operator ANY (subquery)
expression operator SOME (subquery)
expression operator ALL (subquery)

psql: command line options

psql: internal commands

-h host set the host (such as localhost or
the AWS server)

-p port set the port (default 5432)

-U user connect to Postgres with a
particular Postgres username

-f file run an SQL file (do queries or
load data)

-E show extra information about psql
operations

-d database connect to a particular database

help show help
\q quit
\l list databases
\c database connect to a particular database
\dt list tables in current database
\lv list views
\du list database users

